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Motto: Compatible local structures can be glued together.

1 Introduction

Last time, we saw that we could view a category fibred in groupoids as a presheaf with
values in groupoids. Therefore, a natural question to ask is when this presheaf is a sheaf.
What does this mean? Let F : Cop → Grpd be a presheaf in groupoids. Then we would
like the following:1

1. Given a covering family {fi : Ci → C} and objects xi ∈ F(Ci) such that xi|Cij =
xj |Cij , then there exists a unique object x ∈ F(C) such that x|Ci = x.

2. Given a covering family {fi : Ci → C}, objects x, y ∈ F(C) and 2-morphisms
ϕi : x|Ci ⇒ x|Cj such that ϕi|Cij = ϕj |Cij , then there is a unique 2-morphism
ϕ : x⇒ y.

Here and in the rest of the document we write, Cij = Ci×CCj and Cijk = Ci×CCj×C

Ck.
1The exact gluing properties will be more subtle than this, because F is a lax 2-functor.
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2 Descent data

The problem we are interested in is the descent of compatible families of objects in mor-
phisms. Therefore, our first step will be to formalise the input to this descent problem,
which is called the descent data.

Definition 2.1 ([6, Def. 4.2]). Let (C,K) be a site and let π : D → C be a category fibred
in groupoids with a chosen cleavage. Let U = {fi : Ci → C} be a covering family. An object
with descent data ({ξi}, {ϕij}) on U is a collection of objects ξi ∈ πCi , and a collection of
isomorphisms ϕij : pr∗2ξj → pr∗1ξi in πCij such that the cocycle condition

pr∗13ϕik = pr∗12 ◦ pr∗23ϕjk

is satisfied. The descent data is called normalized if all ϕii = id.

The projection maps arise from the pullbacks as indicated here in this diagram.

Cijk Cij

Cik Ci

Cjk Cj

Ck C

pr12

pr13

pr23

pr1

pr2

Since we are working with a category fibred in groupoids, we only ask for compatibility up
to an isomorphism, rather than equality on the nose. To do this coherently over a cover,
we then require the cocycle condition to be satisfied. One can compare this to defining a
vector bundle over a manifold by a local cover and transition functions.

There is also a notion of morphisms of descent data.

Definition 2.2 ([6, Def. 4.2]). An arrow between objects with descent data

{αi} : ({ξi}, {ϕij}) → ({ηi}, {ψij})

is a collection of arrows αi : ξi → ηi with the property that for each pair of indices i, j the
diagram

pr∗2ξj pr∗2ηj

pr∗1ξi pr∗1ηi

pr∗2αj

ϕij ψij

pr∗1αi

commutes.

The composition of two arrows of objects with descent data is defined as you would
expect: Let {αi} : ({ξi}, {ϕij}) → ({ηi}, {ψij}) and {βi} : ({ηi}, {ψij}) → ({ζi}, {χij}) be
arrows of objects with descent data. Then we define is composition as {βi}◦{αi} = {βi◦αi}.
To see that this is again an arrow of objects with descent data, we need to check that the
commutative diagram in the definition commutes. This follows from the fact that pr∗i are
functors:
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pr∗2ξj pr∗2ηj pr∗2ζj

pr∗1ξi pr∗1ηi pr∗1ζi

pr∗2αj

ϕij

pr∗2(βj◦αj)

pr∗2βj

ψij χij

pr∗1αi

pr∗1(βi◦αi)

pr∗2βi

Hence, we see that the descent data corresponding to a covering family U combines
into a category.

Definition 2.3. The category of descent data of U is the category with objects with descent
data as its objects, and arrows of objects with descent data as its morphisms. We denote
this category by πU .

One can also describe descent data without a choice of cleavage. For details, see [6,
pp. 72–75].

Now, we define a functor DU : πC → πU : Let x ∈ πC . Then as our collection of
objects, we take the chosen pullbacks f∗i x ∈ πCi . The second axiom of a category fibred in
groupoids gives a unique isomorphism ϕij : pr

∗
2f

∗
j x→ pr∗1f

∗
i x, as we see from the following

diagram
pr∗2f

∗
j x Cij

x C

pr∗1f
∗
i x Cij

∃!ϕij

fjpr2

1Cij
π

fipr1

This yields an object with descent data ({f∗i x}, {ϕij}). Given an arrow ϕ : x → y ∈ πC ,
we assign to it the arrow {f∗i ϕ} : ({f∗i x}, {ϕij}) → ({f∗i y}, {ψij}). We have to show that
this is indeed an arrow of objects with descent data. We deduce this from the following
diagram.

pr∗2f
∗
j x pr∗2f

∗
j y Cij Cij

pr∗1f
∗
i x pr∗1f

∗
i y Cij Cij

pr∗2f
∗
j ϕ

ϕij ∃!χ ψij

1

1 1 1

pr∗1f
∗
i ϕ

1

π

By applying the second axiom of a fibred category to the diagonal arrow, we obtain a
map χ making the lower right triangle commute. Then applying the second axiom to the
upper left triangle, we obtain a unique arrow along the upper horizontal line. But pr∗2f

∗
j ϕ

is precisely such an arrow, so we conclude that the upper triangle also commutes, and
therefore the outer square commutes.

Lemma 2.4. The map DU : πC → πU is a functor.

Proof. This follows from the fact that the composition is defined component wise, and that
the pullbacks f∗i : πC → πCi are functors.
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3 Prestacks and stacks

Definition 3.1 ([6, Def. 4.6]). Let (C,K) be a site and let π : D → C be a category fibred
in groupoids. Then π is a prestack if for all objects C ∈ C and all covering families U of
C, the functor πC → πU is fully faithful.

Let us spell out what this means in more concrete terms. Let C ∈ C, let U = {fi : Ci →
C} be a covering family of C and let x, y ∈ πC . Then the statement that functor is full
faithful means that

HomπC (x, y)
∼= HomπU (({f

∗
i x}, {ϕij}), ({f∗i y}, {ψij})).

So suppose we are an arrow of objects with descent data {αi} : ({f∗i x}, {ϕij}) → ({f∗i y}, {ψij}),
that is a collection of arrows αi : f∗i x → f∗i y such that ψij ◦ pr∗2αj = pr∗1αi ◦ ϕijp. Then
there is a unique morphism α : x → y such that f∗i α = αi. If we use the isomorphisms to
change the domain to (fjpr2)

∗x and the codomain to (fjpr2)
∗y, then we get pr∗2αj = pr∗1αi.

So if we have locally defined morphisms, which are compatible overlaps, then they glue to
a unique global morphism. This is precisely point 2 of our wishlist.

Definition 3.2 ([6, Def. 4.6]). A prestack π : D → C is a stack if for all object C ∈ C and
all covering families U of C, the functor πC → πU is essentially surjective.

Remark 3.3. This says precisely that for a stack the functor πC → πU is an equivalence of
categories.

Let us again spell out what this means in more concrete terms: Given an object with
descent data ({ξi}, {ϕij}) ∈ πU , there is an object x ∈ πC such that ({f∗i x}, {ψij}) is
isomorphic to the given object with descent data. So in particular f∗i x ∼= ξi for all i. So if
we have objects which are compatible on overlaps, then they glue to an essentially unique
object x. But this is the weakened version of point 1 on our wishlist. So we have achieved
our goal.

4 Examples

In this section we will discuss several examples of stacks. In all these examples, the stacks
will be stacks living over the large site of all manifolds, Mfld. However, all examples can
be developed in greater generality.

4.1 Representable stacks & sheaves

The representable stacks are perhaps amongst the simplest stacks on Mfld. However,
they will play an important role when we start discussing differentiable stacks, since the
subcategory of representable stacks is isomorphic to the category Mfld itself.

Let M ∈ Mfld and define π : Mfld/M → Mfld by sending objects g : N → M to N , and
morphisms h : (P, f) → (N, g) to h : P → N . Then we have the following

Proposition 4.1. The functor π : Mfld/M → Mfld is a stack.

Proof. We first have to show that π : Mfld/M → Mfld is a category fibred in groupoids. To
show that pullbacks exist, let h : P → N be a morphism in Mfld and let g : N → M ∈
Mfld/M . Then h : (P, gh) → (N, g) is a pullback arrow projecting to h. Note that the
pullback object is unique, namely gh : P →M .
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Next, we need to show that we can complete the following diagram

P P

N M N

Q Q

a

h

a

h

b b

π

but it is clear, that picking h and augmenting the domain and codomain with the maps to
M works.

Now, to show that this is fact a stack, we note that for any manifold N ∈ Mfld
we have πN = HomMfld(N,M), where this set is viewed as a discrete groupoid. Let
U = {fi : Ui → N} be a covering family. Then we note that the functor πN → πU is fully
faithful since

HomπN (f, g) =

{
{1N} f = g

∅ otherwise

and

HomπU (({f ◦ fi}, {1Uij}), ({g ◦ fi}, {1Uij})) =

{
{{1Ui}} f = g

∅ otherwise

To see that the functor is also essentially surjective, let ({gi}, {1Uij}) be an object
with descent data in πU . Let us define g : N → M by g(x) = gi(f

−1
i (x)) if x ∈ fi(Ui).

This well-defined: Suppose that x ∈ fj(Uj) as well, then there is a unique (y, z) ∈ Uij =
Ui ×N Uj (using the injectivity of fi and fj) such that fi(y) = fj(z) = x and then it
immediately follows that gi(y) = gj(z), since the compatibility isomorphism is the identity.
So g : N →M is a well-defined function of sets. Now, {fi(Ui)} is an open cover of M and
g|fi(Ui) = gi ◦ f−1

i is smooth for each i. So it follows that g is in fact smooth. Finally, this
last identity also shows that g ◦ fi = gi.

The proof above only used that HomMfld(−,M) is a sheaf, and one might suspect that
all sheaves on a site give rise to a stack on the same site. This is indeed the case.

Theorem 4.2 ([6, Prop. 4.8]). Let C be a site, and F : Cop → Set a presheaf. This can
also be viewed as a category fibred in (discrete) groupoids π : (∗ ↓ F ) → C (here ∗ ↓ F is
the category of elements of F ). Then F is a sheaf if and only if π : (∗ ↓ F ) → C is a stack.

4.2 Vector bundles & principal G-bundles

Let us now use this theory to study vector bundles. To this end, let us define the category
VBn with objects rank n vector bundles p : E → M and morphisms vector bundle mor-
phisms covering a smooth map of the bases which are fibrewise linear isomorphisms.2 We
have a forgetful functor π : VBn → Mfld by sending the vector bundles to their base, and
the morphisms to the base map.

Lemma 4.3. The functor π : VBn → Mfld is a category fibred in groupoids.
2This restriction of all vector bundle morphisms is necessary to ensure that π becomes fibred in

groupoids.
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Proof. Given a map f : N →M in Mfld and an object p : E →M ∈ VBn, there must exist
an object an morphism VBn projecting to (covering) f . Such a fibre bundle is precisely
given by the pullback bundle, which is defined as follows:

q : f∗E = {(x, v) ∈ N × E : p(v) = f(x)} → N, (x, v) 7→ x

and with vector bundle morphism f̃ : f∗E → E, (x, v) 7→ v. Then we see immediately that
this is a fibrewise linear isomorphism, and so f̃ is a morphism in VBn.

Next we need to show that if we have the following situation

F1 M

E N

F2 P

ϕ

χ

f

h

ψ

g
π

then there is a unique morphism χ : F1 → F2 in VBn completing the left triangle. We
construct this χ as follows. We have a map ϕ̃ : F1 → f∗E given by v 7→ (p1(v), ϕ(v)). This
is vector bundle morphism covering the identity which is a fibrewise isomorphism, hence
this is a vector bundle isormorphism. Similarly, we have a vector bundle isormorphism
ψ̃ : F2 → g∗E given by v 7→ (p2(v), ψ(v)). Next, we have a map χ̄ : f∗E → g∗E, (x, v) 7→
(h(x), v). This map is well-defined since f = gh. Moreover, this map is a fibrewise
isomorphism, so a morphism in VBn. Now, we define χ = ψ̃−1 ◦ χ̄ ◦ ϕ̃. Then we have for
v ∈ F1|x

ψχ(v) = ψ ◦ ψ̃−1 ◦ χ̄(x, ϕ(v)) = ψ ◦ ψ̃−1(h(x), ϕ(v)) = ψ(ψ−1(ϕ(v))) = ϕ(v),

where in the penultimate step, ψ−1 means the fibre inverse on the fibre over gh(x). So χ
is one map making this triangle commute. The uniqueness follows from the fact that all
maps are fibrewise isomorphisms and cover given maps.

Next, let us recall that we can glue compatible locally defined maps between vector
bundles together, as is customary in differential geometry.

Lemma 4.4. Let p : E → M , q : F → M be two vector bundles. Let {Ui}i∈I be an open
cover of M . Let ϕi : E|Ui → F |Ui be vector bundle morphism for each i ∈ I. Suppose that
ϕi|Uij = ϕj |Uij : E|Uij → F |Uij , where Uij = Ui ∩ Uj. Then there exists a unique vector
bundle morphism ϕ : E → F such that ϕ|Ui = ϕi.

Proof. We define ϕ : E → F by ϕ(v) = ϕi(v) if p(v) ∈ Ui. This is well-defined, since if
p(v) ∈ Uj as well, then p(v) ∈ Uij and so ϕi(v) = ϕj(v). So we have defined a function.
Moreover, it follows immediately from the definition that ϕ is linear on the fibres of E,
since the ϕi are.

The collection {p−1(Ui)} is an open cover of E and ϕ|Ui = ϕ|p−1(Ui) = ϕi, which is
smooth, so ϕ is a smooth map and satisfies the last condition. So we conclude that ϕ is
the desired vector bundle morphsim.

Uniqueness of ϕ follows immediately from the prescribed local form.

Corollary 4.5. Under the hypothesis of the previous lemma, if all ϕi are vector bundle
isomorphisms, then ϕ is a vector bundle isomorphism.
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Proof. A vector bundle morphism is an isomorphism if it is a fibrewise linear isomorphism.
This is a local condition and so the result follows immediately from the extra hypothesis.

Next, we turn to gluing vector bundles themselves together. Next, we can simplify our
problem, by making identifications.

Lemma 4.6. Let f : U → M be an open embedding, and let p : E → M be a vector
bundle. Then the pullback map f̃ : f∗E → E restricts to a vector bundle isomorphism
f∗E → p−1(f(U)).

Proof. We know that f̃ : f∗E → E is a fibrewise linear isomorphism, so if we can show
that it is injective and its image is p−1(f(U)), then we are done.

Suppose that f̃(x, v) = f̃(y, w), then we know that f(x) = f(y), so x = y since f is an
embedding, and so also v = w. So f̃ is an injective map.

Let v ∈ p−1(f(U)), then p(v) = f(x) for some x ∈ U . Then f̃(x, v) = v. And for an
arbitrary (x, v) ∈ f∗E we have x ∈ U and so p(v) = f(x) ∈ f(U). So we are done.

Lemma 4.7. Let f : U →M be an open embedding, and let p : E → U be a vector bundle.
Then fp : E → f(U) is a vector bundle.

Proof. This follows from the fact that f(U) is open, and f : U → f(U) is a diffeomorphism.

Lemma 4.8. Let M be a manifold, let {fi : Ui → M} be a covering family in the large
site of manifolds. Let {pi : Ei → Ui} be a collection of vector bundles and assume that
for all i, j there is an isomorphism ϕij : pr

∗
2Ej → pr∗1Ei such that the cocycle condition

pr∗13ϕik = pr∗12ϕij ◦ pr∗23ϕjk is satisfied. Then there is a vector bundle p : E →M such that
f∗i E

∼= Ei.

Proof. By the lemmas above we may reduce to following situation: We are given an open
cover {Ui} of M , vector bundles {pi : Ei → Ui} and isomorphisms {ϕij : p−1

j (Ui ∩ Uj) →
p−1
i (Ui ∩ Uj)} satisfying the cocycle condition.

Define Ê =
∐
i∈I Ei. We say that two elements v, w ∈ Ê are equivalent, v ∼ w if and

only if v ∈ Ei, w ∈ Ej and ϕij(w) = v. Then the cocycle condition ensures that this is an
equivalence relation:

• Reflexivity follows from ϕii = ϕii ◦ ϕii, so ϕii = id.

• Symmetry follows from id = ϕii = ϕij ◦ ϕji, so ϕ−1
ij = ϕji.

• Transitivity follows from the cocycle condition directly.

So let E = Ê/ ∼ as a set and define p : E → M, v 7→ pi(v) if v ∈ Ei. This projection
map is well-defined since the ϕij are vector bundle isomorphisms. We will show that this
map is locally trivial, with trivializations which are smoothly compatible and fibrewise
linear. Let x ∈ M and pick an i such that x ∈ Ui and pick an open Wx ⊂ Ui such
that there is a local trivialization Φ̄i,x : p

−1
i (Wx) → Wx × Rn of Ei. Then we define

Φx : p
−1(Wx) → Wx × Rn, [v] 7→ Φ̄x(v), by picking a representative v ∈ Ei. This is a

bijection.
Now, suppose that x, y ∈M are two points such that Wx∩Wy ̸= ∅. Let us say Wx ⊂ Ui

and Wy ⊂ Uj . Then on (Wx ∩Wy)× Rn we have

Φy ◦ Φ−1
x (z, v) = Φy([Φ̄

−1
i,x (z, v)]) = Φy([ϕji(Φ̄

−1
i,x (z, v))]) = Φ̄j,y ◦ ϕji ◦ Φ̄−1

i,x (z, v).
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This is a composition of smooth vector bundle isomorphisms, so smooth diffeomorphisms
which are fibrewise linear isomorphisms. Then it follows from lemma 10.6 in [5] that
p : E →M is a smooth vector bundle with the local trivializations as constructed above.

It remains to show that p−1(Ui) ∼= Ei for all i. There is a natural map ψ : Ei → p−1(Ui)
given by v 7→ [v]. This map is clearly surjective, and covers the identity. Therefore it
suffices to show that it is smooth and a fibrewise linear isomorphism, which we will now
do in one go. Let x ∈ Ui, then there is an open Wx ⊂ Vj with trivialization Φx. We can
restrict this trivialization to p−1(Wx ∩ Ui). Then we see that

Φx ◦ ψ|p−1(Wx∩Ui)(v) = Φx([ϕij(v)]) = Φ̄j,x ◦ ϕij(v),

which is smooth and a fibrewise linear isomorphism. So ψ is a vector bundle isomorphism.

Theorem 4.9. The functor π : VBn → Mfld is a stack.

Proof. Lemma 4.3 shows that π is a category fibred in groupoids. Given a covering family
U of N ∈ Mfld, lemma 4.4 shows that πN → πU is fully faithful, while lemma 4.8 shows
that it is essentially surjective.

4.2.1 Classification of vector bundles

Let us now use this stack to study the classification of vector bundles over a given manifold.
For this, we need the following standard result in vector bundle theory.

Theorem 4.10 ([4, Theorem 4.7]). Let f, g : N → M be two homotopic maps, and let
p : E →M be a vector bundle. Then g∗E and f∗E are isomorphic. In particular, the only
vector bundle up to isomorphism over a contractible manifold is the trivial vector bundle.

Studying isomorphism classes of vector bundles over M is the same determining the
skeleton of the groupoid πM . Since π is a stack, we know that πM is equivalent to πU for
covering families U of M . So if we choose a "smart" cover, we can use πU to understand
the skeleton of πM .

Definition 4.11 (Adapted from [2, p. 42]). A cover U = {Ui}i∈I of a manifold M is called
good if all the Ui are contractible, as well as all finite intersections of elements of U .

Proposition 4.12 ([2, Theorem 5.1]). Every manifold admits a good cover.

Let U = {Ui}i∈I be a good cover. Then we know that each πUi is a connected groupoid,
since each vector bundle over Ui is trivial. Let ({ξi}, {ϕij}) be an object with descent
data. For each i, let αi : ξi → Ui × Rn be a vector bundle isomorphism. Define ψij =
pr∗1αi◦ϕij◦(pr∗2αj)−1. Then it is an easy check that {αi} : ({ξi}, {ϕij}) → ({Ui×Rn}, {ψij})
is an isomorphism of objects with descent data.

Now, consider an object with descent data ({Ui × Rn}, {ψij}). There is a one-to-
one correspondence between vector bundle isomorphisms ψij : Uij × Rn → Uij × Rn and
smooth maps τij : Uij → GLn(R). Under this identification, the cocycle condition of an
object with descent data corresponds with τik = τijτjk on Uijk. So an object with descent
data ({Ui ×Rn}, {ψij}) is the same as a Čech cocycle {τij} corresponding to the cover U .

Next, let us consider an isomorphism of object with descent data {αi} : ({Ui×Rn}, {ϕij}) →
({Ui × Rn}, {ψij}). Then with the same identification, we can view αi : Ui → GLn(R).
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Consider the diagram
Uij × Rn Uij × Rn

Uij × Rn Uij × Rn

αj

ϕij ψij

αi

Chasing an element (x, v) ∈ Uij × Rn around this diagram, we obtain

(x, αi(x)ϕij(x)v) = (x, ψij(x)αj(x)v),

where we identify the identification isomorphism with their corresponding maps Uij →
GLn(R). So we have that ({Ui×Rn}, {ϕij}), ({Ui×Rn}, {ψij}) are isomorphic if and only
if there is a collection {αi : Ui → GLn(R)} of smooth maps such that

ϕij = α−1
i ψijαj ,

that is, if and only if, {ϕij} and {ψij} are equivalent as Čech cocycles, i.e. {αi} is a Čech
coboundary. So we have (re)discovered that vector bundles over M are classified by Čech
cocycles up to equivalence on a good cover. That is, we have proven the following.

Theorem 4.13. Let M be a manifold. There is a one-to-one correspondence

{Rank n vector bundles E →M} ∼=
Čech cocycles {ϕij}

Čech coboundaries {αi}

4.2.2 Principal G-bundles and quotient stacks

In a previous lecture, we already saw that principal G-bundles over manifolds form a
category fibred in groupoids π : BG → Mfld. One can adapt the proofs in the previous
section to show that this is also a stack. We then obtain the classifying stack of principal
G-bundles over manifolds. In fact, assiging to a vector bundle its frame bundle, and
conversely to a principal GLn(R)-bundle the associated vector bundle (where we take the
standard action of GLn(R)) we obtain an "isomorphism of stacks".3

More generally, let us consider an adaption of example 1.5 in [3]. Let G be a Lie group
acting on a manifold M via A : G×M →M . Then we define the quotient stack [M/G] as
the fibred category over Mfld with objects pairs (p : P → Y, f : P → M) where p : P → Y
is a principal G-bundle and f : P → M is a G-equivariant map. Morphisms between
pairs (p : P → Y, f : P → M) and (q : Q → Z, g : Q → M) are given by smooth maps
G-equivariant maps ϕ : P → Q such that gϕ = f . The projection map π : [M/G] → Mfld
is given by sending (p : P → Y, f : P → M) to Y and a morphism ϕ to the base map it
covers. In the next section we will apply this construction to a familiar stack.

4.3 Triangles

In the first lecture we saw the classifying stack of triangles, based on chapter one of [1].
At the end of this lecture we saw that have a fine moduli object for triangles we needed to
consider the set

N =
{
(a, b, c) ∈ R3 : a+ b+ c = 2; a, b, c < 1

}
.

3The precise meaning of this, is the content of a later lecture. Perhaps even neater is that you actually
discover the frame bundle (if you did not know it before), when trying to show that the stack π : VBn → Mfld
is a differentiable stack.
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endowed with an action of the dihedral group D3 encoding the symmetries of triangles.
A family of triangles over M then is a principal D3-bundle P → M together with a D3-
equivariant map from P to N . So by the above, we see that the classifying stack of triangles
is the quotient stack [N/D3].
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