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1 Topological properties

We start our review by recalling some topological properties one can use to study topological
spaces.

Definition 1.1 (Hausdorff). A topological space (X, T ) is Hausdorff if for every two distinct
points x, y ∈ X,x ̸= y there exist open sets U, V ∈ T such that x ∈ U and y ∈ V and
U ∩ V = ∅. That is, U is an open neighbourhood of x, V is an open neighbourhood of V and
these neighbourhoods are disjoint.

Definition 1.2 ((Dis)connectedness). A topological space (X, T ) is disconnected if there exist
disjoint non-empty open sets U, V ∈ T such that X = U ∪ V .

A topological space is connected if it is not disconnected.

Remark 1.3. If we want to show that a topological space is connected, one has to show the
following: Given two open sets U, V ∈ T such that X = U ∪ V and U ∩ V = ∅ it follows that
either U = ∅ or V = ∅.

Definition 1.4 (Path-connectedness). A topological space (X, T ) is path-connected if for any
two points x, y ∈ X there exists a continuous path γ : [0, 1] → X such that γ(0) = x and
γ(1) = y.

Lemma 1.5. A path-connected topological space (X, T ) is connected.

Proof. Suppose that X is disconnected. Then there exist non-empty disjoint open sets U, V ∈ T
such that X = U ∪ V . Pick x ∈ U and y ∈ V . Then by path-connectedness there is a path
γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Then by continuity γ−1(U) and γ−1(V ) are two
disjoint open sets covering [0, 1]. Moreover, 0 ∈ γ−1(U) and 1 ∈ γ−1(V ). So the unit interval is
disconnected. This is a contradiction, hence X is connected.

Definition 1.6 (Compactness). A topological space (X, T ) is compact if every open cover
admits a finite subcover, i.e. given any open cover U = (Ui)i∈I there is a finite set of indices
i1, . . . , iN such that

⋃N
k=1 Uik = X.
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Note that we say that a subset C ⊂ X has any of the properties above if it has this property
as a topological space with the induced1 topology.

Lemma 1.7. Let f : X → Y be a continuous map.
(i) If C ⊂ X is connected, then f(C) is connected.
(ii) If C ⊂ X is path-connected, then f(C) is path-connected.
(iii) If K ⊂ X is compact, then f(K) is compact.

Proof. (i) Suppose that f(C) is disconnected, then there are open subsets U, V of Y such that
U, V ̸= ∅, U ∩ V ∩ f(C) = ∅ and f(C) ⊂ U ∪ V . Then f−1(U), f−1(V ) is a cover of C by two
non-empty disjoint open sets of X, so C is disconnected. So if f(C) is disconnected, then C is
disconnected. The contrapositive of this implication is the desired statement.

(ii) Suppose that C is path-connected. Let x, y ∈ f(C). Then there are points x0, y0 ∈ C such
that f(x0) = x and f(y0) = y. Since C is path-connected, there is a path γ : [0, 1] → C from x0
to y0. Then f ◦γ is a continuous path in f(C) and f(γ(0)) = f(x0) = x and f(γ(1)) = f(y0) = y.
So f(C) is path-connected.

(iii) Let U = (Ui)i∈I be an open cover of f(K). Then (f−1(Ui))i∈I is an open cover of K
which is compact. So there is a finite subcover (f−1(Uik))

N
k=1. So then we have that (Uik)

N
k=1 is

a finite subcover of f(K). So f(K) is compact.

Lemma 1.8. Let (X, T ) be a topological space.
(i) If X is compact and C ⊂ X is closed, then C is compact.
(ii) If X is Hausdorff and C ⊂ X is compact, then C is closed.

Proof. (i) Suppose that X is compact and C ⊂ X is closed. Let U = (Ui)i∈I be an open cover
of C. Since C is closed, X \ C is open and so (X \ C) ∪ U is an open cover of X. Since X is
compact, there is a finite subcover which in particular covers C. So C is compact.

(ii) Suppose that X is Hausdorff and that C ⊂ X is compact. We will show that X \ C is
open. Let x ∈ X\C. By Hausdorffness, for every y ∈ C there exist disjoint open neighbourhoods
Uy of x and Vy of y. Then the (Vy)y∈C form an open cover of C. So by compactness, there is

a finite subcover (Vyi)
N
i=1. Then U =

⋂N
i=1 Uyi is an open neighbourhood of x, and it is disjoint

from
⋃N
i=1 Vyi . In particular, U ∩ C = ∅. So U ⊂ X \ C. So X \ C is open.

Recall that a map is called closed if f(C) is closed for every closed subset C.

Proposition 1.9. Let f : X → Y be an injective continuous map. Suppose that X is compact
and that Y is Hausdorff. Then f is an embedding.

Proof. By the lemmas above any closed C ⊂ X is compact and so f(C) is compact and therefore
closed. Consider the inverse f−1 : f(X) → X. Then for a closed C ⊂ X we have

(f−1)−1(C) = f(C)

so by the above this is closed. Therefore, f−1 is continuous and so f is an embedding.

Corollary 1.10. Let f : X → Y be a bijective continuous map from a compact space X to a
Hausdorff space Y . Then f is a homeomorphism.

Proof. A bijective map is injective, so by the previous proposition f is an embedding. Since f
is surjective this means that f is a homeomorphism between X and f(X) = Y .

Definition 1.11 (Locally (path-)connected). A topological spaceX is called locally (path-)connected
if each point x ∈ X has a neighbourhood U that is (path-)connected.

Definition 1.12 (Locally compact). A topological space X is called locally compact if each
point x ∈ X has a neighbourhood K that is compact.

1subspace

2



2 Quotient topology

The quotient topology formalizes the idea of gluing pieces of a topological space together. If
you remember only one thing from this section let it be the following proposition.

Proposition 2.1 (Universal property of quotients). Let π : X → Y be a surjective function
of sets from a topological space into a set Y . There is a unique topology on Y such that π is
continuous, and the following universal property holds: Given a function g : Y → Z into any
topological space Z, g is continuous if and only if g ◦ π : X → Z is continuous.

X

Y Z

g◦π
π

g

Remark 2.2. There is a white lie going here. The actual universal property for the quotient
topology is corollary 2.9. However, as the rest of this section will show, this corollary follows
from this proposition.

Let us try to discover what this topology should be. First, we want π : X → Y to be
continuous. This gives us the implication that if V ⊂ Y is open, then π−1(V ) is open in Y .

Secondly, we want the universal property to hold, so let us think about what this implies
for the topology on Y . It tells us that if we have a function g : Y → Z such that g ◦ π : X → Z
is continuous, then g is continuous. So given an open V ⊂ Z this means that (g ◦ π)−1(V ) =
π−1(g−1(V )) open implies that g−1(V ) is open. So we want the implication π−1(V ) implies that
V ⊂ Y is open for any subset V ⊂ Y .2

Definition 2.3 (Quotient topology). Let X be a topological space and let π : X → Y be a
surjective function of sets. Then the quotient topology on Y induced by π is given by

Tπ =
{
V ⊂ Y : π−1(V ) ⊂ X is open

}
So a subset of V ⊂ Y is open if and only if π−1(V ) is open.

Lemma 2.4. The quotient topology induced by π : X → Y is a topology.

Proof. We have to show that Tπ satisfies the axioms of a topology. We have that π−1(Y ) = X
and X is open in X. So Y ∈ Tπ. Similarly, π−1(∅) = ∅ which is open in X. So ∅ ∈ Tπ.

Next, let U, V ∈ Tπ. Then we have

π−1(U ∩ V ) = π−1(U) ∩ π−1(V ),

and so π−1(U ∩ V ) is open as the intersection of two subsets. Thus, U ∩ V ∈ Tπ.
Let (Ui)i∈I ⊂ Tπ be a collection. Then

π−1

(⋃
i∈I

Ui

)
=
⋃
i∈I

π−1(Ui),

which is open as the union of open sets. So
⋃
i∈I Ui ∈ Tπ.

So Tπ is a topology on Y .

It turns out that this is precisely the unique topology that is meant in proposition 2.1.

2Or a priori only for any subset V that can appear as the preimage of a function g : Y → Z such that g ◦ π is
continuous. (Can any open subset appear as the preimage of a continuous map? Yes!)
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Proof of proposition 2.1. We will first show that Tπ has the desired properties. We start with
showing that π is continuous. So let V ⊂ Y be open. Then by definition π−1(V ) is open. So π
is indeed continuous.

Next, we show that the universal property is satisfied. Let g : Y → Z be a function of sets
into a topological space Z. The only if direction of the universal property is clear, since the
composition of two continuous maps is again continuous. For the if direction, suppose that g◦π is
continuous. Let U ⊂ Z be open. Then we have by assumption that (g ◦π)−1(U) = π−1(g−1(U))
is open. So by the definition of the quotient topology g−1(U) is open in Y . Thus, g is continuous.

Next, we need to show that this is the unique topology with this property. Suppose that T ′

is another topology with this property. Then we have the following commutative diagrams

X

(Y, Tπ) (Y, T ′)

π
π

idY

X

(Y, T ′) (Y, Tπ)

π
π

idY

So using the universal property and the fact that π is continuous with respect to both topologies,
we conclude that idY : (Y, Tπ) → (Y, T ′) is a homeomorphism. But this implies that Tπ = T ′.

Definition 2.5 (Quotient map). Let π : X → Y be a surjective continuous map. We say that
π is a quotient map if it satisfies the following condition: V ⊂ Y is open if and only if π−1(V )
is open.

Remark 2.6. The fact π : X → Y is a quotient map says precisely that the topology on Y is the
quotient topology. In particular, π has the universal property from proposition 2.1.

In practice, quotient topologies arise when one identifies points of a topological space. This is
formalized by defining an equivalence relation R on a topological space X and then modding out
X by this relation R. Given an equivalence relation R on a set X, one obtains a surjective map
π : X → X/R sending each element of X to its equivalence class under R (here X/R denotes
the partition of X into its equivalence classes under R). Then we can endow X/R with the
quotient topology to turn this into a topological space. The following proposition shows that
this is the unique quotient space up to homeomorphism, that identifies points in X according
to the equivalence relation R.

Proposition 2.7. Let R be an equivalence relation on a topological space X and let π : X → Y
be a quotient map whose fibres π−1(y) are the equivalence classes of R. Then Y is homeomorphic
to X/R with the quotient topology.

Proof. Let q : X → X/R denote the quotient map. Since π is constant on the equivalence classes
of R we may define π̄ : X/R → Y by sending [x] 7→ π(x). This is well-defined because of the
constancy assumption. We then have the following diagram

X

X/R Y

πq

π̄

so since q is a quotient map, π̄ is continuous.
Similarly, let us define q̄ : Y → X/R by sending y 7→ π−1(y) which is well-defined by as-

sumption. This gives another diagram

X

Y X/R

q
π

q̄
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from which we conclude that q̄ is also continuous.
Finally, we have

π̄ ◦ q̄(y) = π̄(π−1(y)) = y and q̄ ◦ π̄([x]) = q̄(π(x)) = π−1(x) = [x].

So π̄ and q̄ are inverses, and so π̄ is a homeomorphism.

Remark 2.8. In fact, every quotient topology arises in this way: Given a quotient map π : X → Y ,
the statement above implies that Y ∼= X/Rπ where Rπ is the equivalence relation xRπy if and
only if π(x) = π(y).

Corollary 2.9 (Descent to the quotient). Let π : X → Y be a quotient map, and suppose that
f : X → Z is a continuous map which is constant on the fibres of π. Then there is a unique
continuous f̄ : Y → Z such that f̄ ◦ π = f . We say that f “descends to the quotient”.

X

Y Z

f
π

f̄

Proof. Using the remark above, we see that Y ∼= X/Rπ, so it suffices to show that there is a
unique function f̄ : X/Rπ → Z such that f̄ ◦ q = f , where q : X → X/Rπ is the quotient map.

Define f̄ : X/Rπ → Z by [x] 7→ f(x). This is well-defined, since f is constant on the fibres
of π. Moreover, we have f̄(q(x)) = f̄([x]) = f(x), for all x ∈ X, so f̄ ◦ q = f . Then using the
universal property for the quotient, we conclude that f̄ is continuous.

Assume that g : X/Rπ → Z is another such map. Then we have g ◦ q = f = f̄ ◦ q, and q is
surjective, so g = f̄ , proving the uniqueness.

3 Product topology

Another useful construction in topology which satisfies a universal property is the product of
two spaces. Recall the definition of the product topology.

Definition 3.1. Let X, Y be topological spaces. The product topology on X × Y is defined as
the topology generated by the basis

B = {U × V : U ⊂ X,V ⊂ Y open} .

Just like the quotient topology, the product topology is precisely the topology that makes a
universal property (for the product) hold true.

Proposition 3.2 (Universal property of products). Let X,Y be topological spaces. Then the
product X×Y endowed with the product topology together with the continuous projection maps is
the unique space (up to unique homeomorphism) satisfying the following universal property:
Given two continuous maps f : Z → X and g : Z → Y there is a unique continuous map h : Z →
X × Y such that prX ◦ h = f and prY ◦ h = g.

X

Z X × Y

Y

f

g

∃!h

prX

prY
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Proof. We will first show that X×Y with the product topology satisfies the universal property.
So let f : Z → X and g : Z → Y be continuous maps. We define h : Z → X × Y by z 7→
(f(z), g(z)). This function satisfies prX ◦ h = f and prY ◦ h = g, so it remains to show that h
is continuous. For this it suffices to show that the preimage of basis elements are open in Z. So
let U ⊂ X and V ⊂ Y and consider

h−1(U × V ) = {z ∈ Z : f(z) ∈ U and g(z) ∈ V } = f−1(U) ∩ g−1(V ),

which is open by the continuity of f and g. So X × Y satisfies the universal property.
Suppose that P is a topological space together with continuous maps πX : P → X and

πY : P → Y that satisfies the universal property as well. Then we have the following diagram

X

P X × Y

Y

πX

πY

∃!ϕ

prX

prY

so by the universal property of the product topology X × Y we have a continuous map ϕ : P →
X × Y . Similarly, we have

X

X × Y P

Y

prX

prY

∃!ψ

πX

πY

so by the universal property of P we have a continuous map ψ : X×Y → P . Then ψ◦ϕ is a map
from P to itself, and πX ◦ψ◦ϕ = prX ◦ϕ = πX by construction. Similarly, πY ◦ψ◦ϕ = πY . Then
by the uniqueness assertion from the universal property, it follows that ψ ◦ ϕ = idP . Applying
the same reasoning, we obtain ϕ ◦ ψ = idX×Y . Thus, P is homeomorphic to X × Y .

Remark 3.3. This proposition essentially tells us that giving a map into a product is the same
thing as giving a map into each of the two factors of the product.

Proposition 3.4 (Product of compact spaces, Tychonoff’s theorem). Let X and Y be compact
topological spaces. Then X × Y endowed with the product topology is compact.

For the proof of this proposition, we need the following lemma.

Lemma 3.5 (Tube lemma). Let X be a topological space and let Y be a compact topological
space. Let W ⊂ X × Y be open (in the product topology) and assume that {x} × Y ⊂ W for
some x ∈ X. Then there is an open neighbourhood U ⊂ X of x such that U × Y ⊂W .

Proof. Let y ∈ Y . Then (x, y) ∈ W , so by definition of the product topology, there exist open
subsets Uy ⊂ X and Vy ⊂ Y such that x ∈ Uy and y ∈ Vy and Uy×Vy ⊂W . This yields an open
cover (Vy)y∈Y of Y , so by compactness, there is a finite subcover indexed by y1, . . . , yN . Let

U =
⋂N
i=1 Uyi , which is an open neighbourhood of x. For each i we have U×Vyi ⊂ Uyi×Vyi ⊂W ,

so

U × Y =
N⋃
i=1

U × Vyi ⊂W.
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Proof of proposition 3.4. Let (Wi)i∈I be an open cover of X × Y . Since Y is compact {x} × Y
is compact for each x ∈ X. In particular (Wi)i∈I is a cover of {x} × Y , so compactness yields a
finite subcover (Wx,k)

Nx
k=1 for each x ∈ X. Then for each x ∈ X, we have {x}×Y ⊂

⋃Nx
x,k=1Wx,k,

so by the tube lemma, there is an open neighbourhood Ux of x, such that Ux×Y ⊂
⋃Nx
x,k=1Wx,k.

This yields an open cover (Ux)x∈X of X, so by compactness, there is a finite subcover (Uxl)
M
l .

Then we have
M⋃
l=1

Nxl⋃
k=1

Wxl,k ⊃
M⋃
l=1

Uxl × Y = X × Y,

so the cover admits a finite subcover.

Remark 3.6 (Universal properties). Propositions 2.1, 2.7, and 3.2 are examples of a more general
principle, namely that universal properties uniquely characterize spaces (more strictly speaking,
maps between spaces) up to unique isomorphism. This can be formalized using the language of
category theory, which will lead one eventually into the world of (co)limits and special types of
functors.

Let us discuss one more example of a construction characterized by a universal property,
which is dual to the construction of the product of two spaces. A product of two spaces X,Y is
a space X×Y together with two continuous maps prX : X×Y → X and prY : X×Y → Y such
that we have the universal property from proposition 3.2. If we now reverse the arrows in the
diagram, we may ask if there is a space U together with two maps jX : X → U and jY : Y → U
such that we have the following diagram

X

Z U

Y

f

g

∃!h

jX

jY

That is, given continuous maps f : X → Z and g : Y → Z, there is a unique map h : U → Z
such that h ◦ jX = f and h ◦ jY = g. It turns out that such a space exists (and is unique up to
homeomorphism, as it is characterized by a universal property).

Definition 3.7 (Disjoint union). Let X, Y be topological spaces. The disjoint union of X and
Y is given as a set as the disjoint union of the sets X and Y , i.e.

X
∐

Y = {(x,X) : x ∈ X} ∪ {(y, Y ) : y ∈ Y } .

This set has natural inclusion maps jX : X → X
∐
Y and jY : X → X

∐
Y . The topology on

X
∐
Y is defined as

T =
{
U ⊂ X

∐
Y : j−1

X (U) ⊂ X and j−1
Y (U) ⊂ Y are open

}
.

Remark 3.8. One can view the disjoint union as taking all the elements of X and Y together
into one set, while remembering if each of the elements came from X or Y .

4 Some examples

Let us now apply this knowledge to two concrete examples to see how one uses these results in
practice
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Example 4.1 (Möbius band). The Möbius band can be constructed by identifying two sides of
a square. Alternatively, considering the construction using a piece of paper, we see that we
should be able to embed the Möbius band in three-dimensional space. Using the theory we
have developed so far, we can prove that this is indeed the case, and we can give an explicit
embedding from the abstract identification of sides of a square to the concrete model in R3.

LetX = [0, 1]×[0, 1]. We say that two pairs (x, y), (x′, y′) ∈ X are equivalent, (x, y) ∼ (x′, y′)
if (x, y) = (x′, y′) or if {x, x′} = {0, 1} and y = 1− y′. The Möbius band then is defined as the
quotient space M = X/ ∼.

Let us define a map

φ : X → R3

(t, s) 7→
(
cos(2πt)

(
1 +

(
s− 1

2

)
cos(πt)

)
, sin(2πt)

(
1 +

(
s− 1

2

)
cos(πt)

)
,

(
s− 1

2

)
sin(πt)

)
This map has the following image.

A short computation shows that φ(1, 1− s) = φ(0, s) for all s ∈ [0, 1], so this map descends to a
map φ̄ : M → R3 and one can show that this map φ̄ is injective. Moreover, since X is compact,
so is M . Finally, since R3 is Hausdorff, we conclude that φ̄ is an embedding of the Möbius band
in R3.

Example 4.2 (Sphere from a disk). As a second example, we will use the theory to prove that
Dn/Sn−1 is homeomorphic to Sn, where Dn is the closed unit n-disk and Sn is the unit n-sphere.
The geometric idea is that we put the centre of Dn at the north pole of Sn and stretch the disk
over the sphere, such that the boundary ∂Dn = Sn−1 is mapped to the south pole. With this
procedure each concentric sphere in Dn is mapped to a level set of π : Sn → R, mapping the
point on the sphere to the first coordinate.

Let us view Sn ⊂ R×Rn and let us construct a map φ : Dn → Sn by sending 0 7→ (1, 0) and
any non-zero element

x 7→
(
1− 2∥x∥, x

∥x∥

√
1− (1− 2∥x∥)2

)
(Here ∥x∥ is the Euclidean norm of x in Rn). Away from 0 this map is continuous, so it remains
to check that φ is continuous at 0. This follows from the fact that∥∥∥∥ x

∥x∥
√

1− (1− 2∥x∥)2
∥∥∥∥ =

∥x∥
∥x∥

√
1− (1− 2∥x∥)2 =

√
1− (1− 2∥x∥)2 −→ 0

as x→ 0 and thus
φ(x) −→ (1, 0) as x→ 0.

Now, suppose that x ∈ ∂Dn, then ∥x∥ = 1, and so φ(x) = (−1, 0). So φ descends to a
continuous map φ̄ : Dn/Sn−1 → Sn. We claim that this map is bijective.

For injectivity, suppose that φ̄([x]) = φ̄([y]). Then from the first component, we see that
∥x∥ = ∥y∥. If ∥x∥ = 0, then [x] = [y] = [0]. If ∥x∥ = 1 then x, y ∈ ∂Dn and so [x] = [y]. Finally,
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if 0 < ∥x∥ < 1, then
√
1− (1− 2∥x∥)2 ̸= 0 and so the second component implies that x = y.

So φ̄ is injective.
For surjectivity, let z ∈ Sn. We have already seen that the north pole (1, 0) and south pole

(−1, 0) are in the image, so let us assume that z is not one of the poles. Write z = (h, v). Then

|h| < 1. Let r = 1−h
2 . Then x = rv√

1−h2 ∈ Dn and φ̄
(

rv√
1−h2

)
= z.

Since Sn is Hausdorff and Dn is compact, we conclude that Dn/Sn−1 is compact and therefore
φ̄ is a homeomorphism.
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